SIEMENS

OpenAir™ Rotary damper actuators without spring return GDB/GLB

Technical basics

Issued by
Siemens Switzerland Ltd
Building Technologies Division
International Headquarters
Gubelstrasse 22
6301 Zug
Switzerland
Tel. +41 41-724 24 24
www.siemens.com/buildingtechnologies

 $\hbox{@ Siemens Switzerland Ltd, 2012} \\$ Technical specifications and availability subject to change without notice.

2/42

Contents

1	Introduction	5
1.1	Revision history	5
1.2	About this document	5
1.3	Document contents	5
2	Non-spring return rotary actuators	6
2.1	Application	6
2.2	Type summary	6
2.3	Description of functions	7
2.3.1	Supplementary information on the description of functions for modulating actuators	8
2.3.2	Supplementary information on the description of functions for networked actuators	9
2.4	Controllers	9
2.5	Mechanical design	10
2.6	Setting and operating elements	11
3	Technical design	12
3.1	Drive motor	12
3.2	Rotary range and mechanical limitation	12
3.3	Auxiliary switches and positioning signals	13
3.4	Adjustable characteristic function	14
3.5	Neutral zone	15
4	Engineering notes	16
4.1	Safety notes	16
4.2	Device-specific regulations	17
4.3	Notes on EMC optimization	18
4.4	Determining the actuator	18
5	Mounting notes	20
6	Wiring notes	21
6.1	Permissible line lengths and cross-sectional aera	21
6.2	Actuator wiring (three-position)	23
6.3	Actuator wiring (modulating)	24
6.4	Actuator wiring (Modbus RTU)	24
7	Commissioning notes	25
7.1	General checks	25
7.2	Electrical functional check	25
7.3	Modbus	27

7.3.1	HMI – Human-machine interface	27
7.3.2	Push button addressing	28
7.3.3	Commissioning	29
7.3.4	Modbus registers	30
7.3.5	Parameter and function description	32
8	Technical data	33
9	Diagrams	35
9.1	Internal diagrams	35
9.2	Cable labeling	35
9.3	Connection diagrams (three-position control)	36
9.4	Connection diagrams (modulating)	37
9.4.1	Typical application	37
9.4.2	Special diagram for modulating control	37
9.5	Connection diagrams (networked)	38
9.5.1	Typical application	38
10	Environmental compatibility and disposal	38
11	Appendix	39
11.1	Dimensions	39
11.2	Referenced documents	39

1 Introduction

1.1 Revision history

Changes	Date	Chapter	Pages
Types GDB/GLB1E/MO added	01.08.2016	all	whole Document
EU and RCM Conformity	26.02.2016	8	28
European Directive 2012/19/EU	26.02.2016	10	32
Typ GSF1 removed	19.09.2013	all	whole Document
Types GDB/GLB1J and GDB/GLB1L removed	01.02.2011	all	whole Document
Electrical parallel connection		4.2	16
Permissible line lengths and cross-sectional aera		6.1	20/21
Technical data (Dimensions)	31.03.2005	8	27
Environmental compatibility and disposal		10	32
Referenced documents (Documents and standards)		11.3	34
Diversification of the range of products with the types GDB/GLB1J and GDB/GLB1L	30.07.2004	all	whole Document

1.2 About this document

Main target group

This document targets engineering, product management, and commissioning staff in the RCs.

Purpose

This document provides basic knowledge. In addition to background information, it contains general technical fundamentals on the GDB..1.. / GLB..1.. rotary actuator series. It offers all information on engineering, correct mounting and wiring, commissioning, and service.

Referenced documents

Section 11.2 "Referenced documents" contains a list of documents on rotary and linear actuators with accessories.

1.3 Document contents

This document contains basic technical information on type series GDB..1.. / GLB..1.. for:

- Three-position control,
- Modulating control, and
- · Modbus communication

The following topics are discussed:

- Type summary and description of the available options
- · Applications and functions
- Actuator design including setting and operating elements
- Adjustable auxiliary switches and characteristic function
- Notes on engineering and safety-specific guidelines and regulations
- · Notes on mounting, wiring, and commissioning
- · Technical data
- Diagrams
- · Environmental compatibility and disposal

2 Non-spring return rotary actuators

Introduction

This chapter provides information on application, functions, and equipment combinations. Furthermore, it contains a type summery and explains the actuator design including setting and operating elements for this family of actuators.

2.1 Application

The actuators are used in ventilation and air conditioning plants to operate air dampers and air throttles:

- For damper areas up to 0.8 m² (GDB) and 1.5 m² (GLB), friction-dependent
- Suitable for modulating controllers (DC 0...10 V) or three-position controllers (e.g. rotary and linear dampers for air outlets)

2.2 Type summary

The following table shows the options for the actuator types.

GDB/GLB	131.1E	132.1E	136.1E	331.1E	332.1E	336.1E	161.1E	163.1E	164.1E	166.1E	111.1E
Mode of control			Three-	oosition				Modu	lating		Modbus RTU
Operating voltage AC 24 V	Х	Х	Х				Х	Х	Х	Х	Х
Operating voltage AC 230 V				Х	Х	Х					
Positioning signal input Y DC 010 V							Х			Х	
DC 035 V Characteristic function ∪o, ∆U Modbus RTU								X	Х		X
Position indicator U = DC 010 V							Х	Х	Х	Х	
Feedback potentiometer 1 $k\Omega$		Х			Х						
Self-adaption of rotary angle range							Х	Х	Х	Х	×
Auxiliary switches (two)			X			Х			Х	Х	
Rotary direction switch							Χ	Χ	Х	Х	

Accessories, spare parts

See data Sheet for accessories and spare parts N4698

For functional enhancements of the actuators, the following accessories are available:

Accessories

Rotary/linear set with lever Rotary/linear set for duct and wall mounting Universal lever

Long lever, T-level valve BG and inserts

ASK71.5

ASK71.6

ASK71.9 ASK78.x

2.3 Description of functions

The functions are listed in a table and are assigned to the respective control types.

Туре	GDB131/GLB131 GDB331 GLB331	GDB161/GLB161	GDB111.1E/MO / GLB111.1E/MO	
Mode of control Positioning signal with adjustable characteristic function	Three-position	Modulating $Y = DC 035 V \text{ with}$ offset Uo = 05 V and span $\Delta U = 230 V$	Modbus RTU	
Rotary movement, direction of rotation	Clockwise On the mode of control. With no power applied, the actuator remains in the respective position.	or counter-clockwise direction On the position of the DIL switch: clockwise / counterclockwise On the positioning signal The actuator stays in the position reached: If the positioning signal is maintained at a constant value If the supply voltage is interrupted	On the setting of the respective parameter	
Position indication: Mechanical				
Position indication: Electrical	Connecting the feedback potentiometer to an external voltage source results in a voltage proportional to the rotary angle.	Position indicator: Output voltage U = DC 010 V is generated proportional to the rotational angle. The direction of action (inverted or not inverted) of output voltage U depends on the DIL switch position.	By Modbus register value	
Auxiliary switch	The switching points for aux other in increments of 5° wit	iliary switches A and B can be thin 0 to 90°.	set independent of each	
Self-adaptation of rotary angle range		 The actuator automatically determines the mechanical end of range for the rotational angle The characteristic function (Uo, ∆U) is mapped to the determined rotary angle 	Self-adaptation can be turned on by parameter	
Manual adjustment	The actuator can be manually adjusted by pressing the gear train disengagement button.			
Mechanical limitation of rotary angle	ical limitation of The rotary angle can be limited with an adjusting screw within 0 to 90°			

2.3.1 Supplementary information on the description of functions for modulating actuators.

Characteristic function GDB/GLB163.1, GDB/GLB164.1 Offset Uo and span ΔU can be adjusted using two potentiometers (see section 3.4 "Adjustable characteristic function"). Actuators featuring this function can be used for the following applications:

- Dampers with a rotary angle limitation can, for instance, be controlled in the range of 0°...45° on a control signal of max. DC 10 V (offset Uo and effective span ΔUw, with or without self-adaption)
- As a sequencing actuator in control loops that can only apply a DC 0...10 V control signal to control more than one sequence
- In control systems with a control signal deviating from DC 0...10 V such as DC 2...10 V

Self-adaption of the rotary angle range GDB/GLB16..1

The actuator automatically determines the mechanical end of range for the rotary angle on:

- · Activated self-adaption and switching-on of operating voltage
- · Switch-on and switch-off for self-adaption when operating voltage is supplied

The table shows the different effects of the characteristic function's mapping to the rotary angle range for "inactive self-adaptation" and "active self-adaption" (refer to section 3.4 "Adjustable characteristic function").

Inactive self-adaption	Active self-adaption
 The actuator maps the characteristic function (Uo, ∆U) to the positioning range Ys = 100 % for rotary angle 90° 	 The actuator maps the characteristic function (Uo, ΔU) to the positioning range Ys = 100 % for the determined rotary angle range
The actuator calibrates the position indication with U = DC 010 V for rotary angle 90°	The actuator calibrates the position indication with U = DC 010 V for rotary angle 90°

Electronics calibrates the positioning signal according to the adjusted rotary angle range for the following types of actuators:

- GDB / GLB161.1.., GDB / GLB166.1E with DC 0...10 V
- GDB / GLB163.1.. and GDB / GLB 164.1E with the selected values of offset Uo and span ΔU (refer to section 3 «Technical design»)

The output voltage for position indication will not be affected, that is, the full span of 100 % (nominal rotary angle 90°) corresponds to DC 0...10 V.

Note

2.3.2 Supplementary information on the description of functions for networked actuators.

Process values and parameters
GDB/GLB111.1

Self-adaption of the rotary angle range GDB/GLB111.1

All process values (setpoints and actual values) and all parameters are implemented as Modbus RTU registers and can alternatively be accessed by a handheld tool directly connected to the actuator.

The actuator automatically determines the effective rotary angle range when the respective parameter is set to "on". In that case the actuator performs a calibration run at first startup to determine its actual opening range and adjusts the 0..100% feedback signal to this opening range.

The table shows the different effects of the characteristic function's mapping to the rotary angle range for "inactive self-adaptation" and "active self-adaption":

Inactive self-adaption	Active self-adaption
The actuator calibrates the position indication with Actual Position =	The actuator calibrates the position indication with Actual Position = 0100%
0100% for rotary angle = 90°	for rotary angle < 90°

2.4 Controllers

The actuators can be connected to all controllers having the following outputs. All safety-related requirements must be met (refer to section 4 "Engineering notes").

Actuator type	Mode of control	Controller output
GDB131/GLB131	Three-position	AC 24 V
GDB331/GLB331	Three-position	AC 230 V
GDB161/GLB161	Modulating	DC 010 V / DC 035 V
GB111.1/MO	Modbus RTU	Modbus RTU

2.5 Mechanical design

Description The electromotoric rotary GDB/GLB..1.. actuators are available for three-position,

modulating, and networked control. The maximum torque is 5 Nm (GDB) and 10 Nm

(GLB).

The actuators are equipped with prewired connecting cables.

Housing Robust, light-weight plastic housing. The housing guarantees a long actuator life even

under harsh environmental conditions.

Gear train Maintenance-free and noise-free gear train with stall and overload protection for the life

of the actuator.

Shaft fastening The coupling bushing is made from hardened sintered steel. This mounting type allows

for fastening the actuator to shafts with various diameters and in various shapes

(square, round) using just one socket head cap screw (4 mm).

Manual adjustment When no voltage is supplied, you can manually adjust the actuator or the air damper by

pressing the gear train disengagement button.

Mounting bracket A bolted metal strip is used to attach the actuator.

Centering element

• Ensuring a friction-locked connection between a damper shaft with a small

diameter (8...10 mm) and the coupling bushing

Reducing the vertical movement of the actuator by applying eccentric movement.

The actuators are equipped with prewired connecting cables.

Type-specific elements

Electrical connection

The actuators can be delivered as a type-specific variant having the following elements:

Auxiliary switch For auxiliary functions, you can adjust auxiliary switches A and B on the actuator front.

Potentiometer for offset

and span

Both potentiometers for the characteristic functions Uo and ΔU are accessible on the front.

DIL switches The DIL switches are accessible from the front and can be used for:

self-adaptation

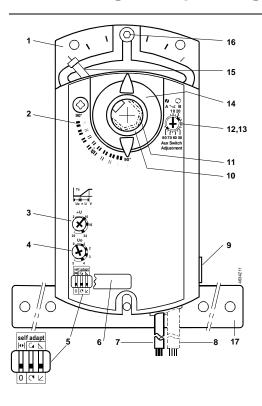
- direction of rotation

inverted or non-inverted output voltage operating function

Feedback potentiometer for position indication

The potentiometer is integrated and can be connected by means of a cable.

Cover for DIL switch This cover protects the DIL switch against dust and water spray.


Cover for tooling interface This cover protects the tooling interface of communicative types against dust and water

spray.

interactions with the actuator or to provide visible feedback from the actuator.

2.6 Setting and operating elements

Actuator

Legend

- 1 Base plate and housing
- 2 Rotational angle scales 0°...90° / 90°...0°
- 3 Potentiometer to adjust the span ΔU
- 4 Potentiometer to set the offset Un
- 5 DIL switches for
 - self-adaptation
 - direction of rotation
 - inverted or non-inverted output voltage operating function
- 6 Cover for DIL switches or tooling interface
- 7 Connecting cable for power, control signal and position indication
- 8 Connecting cable for auxiliary switches or feedback potentiometer
- 9 Slider to disengage the gear train
- 10 Coupling bushing
- 11 Centering element (shaft diameter 8...10 mm)
- 12,13 Setting shafts for auxiliary switches A and B
- 14 Position indicator
- 15 Adjustment lever with shaft fastening screw
- 16 Adjusting screw for rotational angle limitation
- 17 Mounting bracket

DIL switches settings

DIL switch 1: Self-adaption

The following functions can be set and thus require checking.

Self-adaptation can either be ON or OFF. See "Functions" for a functional description.

Factory setting: Self-adaption OFF (0)

DIL switch 2:
Direction of rotation

The rotational movement direction must match the desired damper movement direction (clockwise or counter-clockwise).

Factory setting: Clockwise direction ().

DIL switch 3: Output voltage characteristic Output voltage characteristic U of the electrical position indication can be selected independent of the rotational movement direction. The following variants are possible:

Rot. movement direction 090°	DIL switch position	Output voltage U
C	non-inverted	DC 010 V
C	inverted	DC 100 V
G	non-inverted	DC 010 V
G	inverted	DC 100 V

Factory setting

Characteristic non-inverted (∠)

 $Y_S = 0...100 \% (0^{\circ}...90^{\circ})$

U = DC 0...10 V

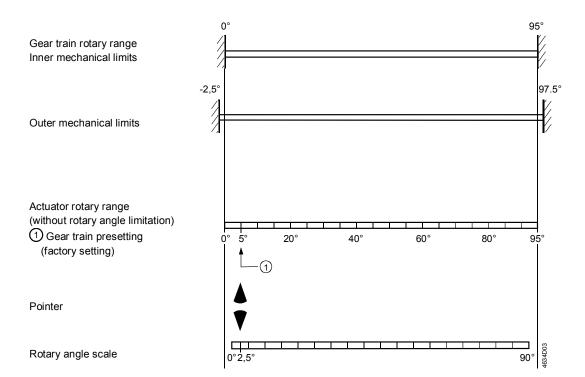
3 Technical design

Introduction

This chapter discusses the following topics:

- Drive motor
- Adjustable auxiliary switches
- Adjustable characteristic function (positioning signal, DC 0...35 V)
- Control characteristics by including the neutral zone

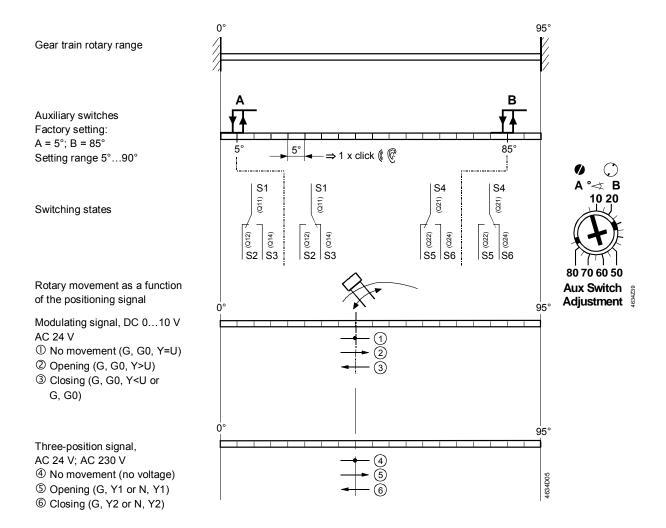
3.1 Drive motor


Drive motor

A synchronous motor enables accurate speed control. The magnetic coupling serves as a torque supervision to protect both actuator and damper.

3.2 Rotary range and mechanical limitation

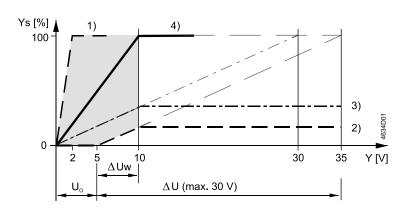
Mechanical functions


The illustration below shows the relationship between the inner and outer mechanical limitation of the rotary range.

3.3 Auxiliary switches and positioning signals

Electrical functions

The illustration below shows the relationship between the rotary angle, the adjustable switching points for auxiliary switches A and B, and the positioning signal.



Note

The setting shafts for the auxiliary switches turn together with the adapter. The scales thus only refer to the "0°" actuator position (clockwise direction).

3.4 Adjustable characteristic function

Actuators GDB/GLB163.1, GDB/GLB164.1 A modulating positioning signal DC 0..35 V from a controller controls the actuator. The rotary angle is proportional to the positioning signal. Using potentiometer "Uo", you can set the offset for DC 0...5 V, and with potentiometer " Δ U", you can set the span for DC 2...30 V.

Y Control signal

Uo Offset range

 ΔU Span (for Ys = 100 %) (virtual span if Y> 10 V)

∆Uw Effective span = 10 V - Uo

Examples as per	Set	Span	ΔU	Control range
diagram	offset Uo	Set	Effective	Ys
1) Min. span	DC 0 V	DC 2 V	DC 2 V	100 % / 90°
2) Min. rotational angle	DC 5 V	DC 30 V	DC 5 V	16.7 % / 15°
3) Min. rotational angle	DC 0 V	DC 30 V	DC 10 V	33.3 % / 30°
4) Factory setting	DC 0 V	DC 10 V	DC 10 V	100 % / 90°

Note

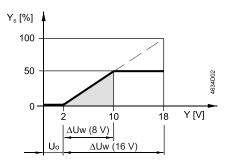
Example

Formula

- The Y input is limited to a max. of DC 10 V, i.e., voltages > DC 10 V are limited
- The virtual adjustable span ∆U is max. 30 V
- The effective span ΔUw = 10 V Uo is between 0 V and 10 V

Define the adjustable span ΔU for an actuator that is to open from 0...50 % (0...45°). The offset Uo is 2 V.

Calculating the setting value for ΔU :


Calculating the setting value for ΔU :

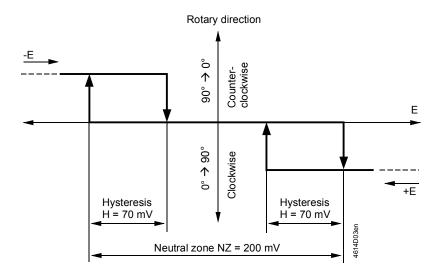
$$\Delta U = \frac{\text{max. positionin g range Ys max [\%]}}{\text{span positionin g range Ys [\%]}} \cdot \left(10 \left[V\right] - Uo\left[V\right]\right) = \frac{100 \%}{50 \%} \cdot \left(10 V - 2 V\right) = 16 V$$

Potentiometer settings

Uo = 2 V, Δ U = 16 V

Characteristic function for the example

Max. positioning range Ysmax = 100 % (90°) Span Ys = 50 % (45°) Offset Uo = 2 V Virtual span Δ U = 16 V Effective span Δ U = 8 V


3.5 Neutral zone

Actuators

GDB16..1../GLB16..1.. (DC 0...10 V) For modulating actuators, note the control characteristic for the selected switch-on point of the setpoint. The diagram shows the setting characteristics by including the neutral zone for range DC 0...10 V.

Note

The diagram shows the setting characteristics by including the neutral zone. The values for the neutral zone listed in the diagram apply to DC 0...10 V (without characteristic function).

The diagram shows the relationship between the differential voltage E = Y - U (difference between setpoint Y and actual value U) and the rotary direction, including hysteresis and neutral zone.

Actuators

GDB163.1/GDB164.1 GLB163.1/GLB164.1 (DC 0...35 V) For DC 0...35 V (with characteristic function) the following values apply:

Neutral zone NZ = 2 % of span ΔU Hysteresis H = 0.7 % of span ΔU

Engineering notes 4

Introduction

Carefully study the basics of the control systems used before proceeding to the sections below, and pay special attention to all safety-related information.

Intended use

Use these actuators in a system only for applications as described in the basic system documentation of the control systems used. Additionally, note the actuator-specific properties and conditions as described in this chapter and in chapter 8 "Technical data".

4.1 Safety notes

following notes

Please observe the This chapter explains general and system-specific regulations for mains and operating voltages. It also contains important information regarding your own safety and that of your plant.

The warning triangle to the left means that you must observe all respectively listed regulations and notes.

If ignored, injuries and equipment damages may result.

General regulations

Observe the following general regulations during engineering and project execution:

- Electric and high-power regulations of the respective country
- Other mandatory country regulations
- House installation regulations of the respective country
- Regulations by the energy supplier
- Diagrams, cable lists, dispositions, specifications, and instructions as per the customer or the engineering company
- Third-party regulations from, e.g., the general contractors or building contractors

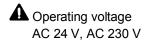
Safety

Electrical safety in Siemens building automation and control systems primarily depends on extra-low voltage with safe isolation from mains voltage.

SELV, PELV

Depending on the earthing of extra-low voltage, SELV or PELV applications as per HD384 "Electrical plants in buildings" result:

Unearthed = Safety Extra-Low Voltage SELV **Grounded = Protective by Extra-Low Voltage PELV**


Earthing of G0 (system neutral)

Observe the following for grounding G0:

- As a rule, earthing as well as nonearthing of G0 is permissible for AC 24 V operating voltage. However, observe all local regulations and customary procedures
- For functional reasons, earthing may be required or not permissible

Recommendation on earthing G0

- As a rule, ground AC 24 V systems if not otherwise indicated by the
- To avoid earth loops, connect systems with **PELV** to the earth at **only one end** in the system, normally at the transformer, unless otherwise specified

The following regulations apply to these operating voltages:

	Regulation
Operating voltage AC 24 V	The operating voltage must comply with the requirements for SELV or PELV: Permissible deviation of AC 24 V nominal voltage at the actuators: +/-20 %
Operating voltage AC 230 V	 Permissible deviation of AC 230 V nominal voltage at the actuators: +/-10 %
Specification on AC 24 V transformers	 Safety transformers as per EN 61558, with double insulation, designed for 100 % run time to supply SELV or PELV circuits Determine the transformer's power consumption by adding up the power consumption in VA for all actuators used The capacity used from the transformer should amount to at least 50 % of the nominal load for efficiency reasons (power efficiency) The nominal capacity of the transformer must be at least 25 VA. For smaller transformers, the ratio between voltage at idle time to voltage at full load is unsatisfactory (> + 20 %)
Fuse of AC 24 V operating voltage	Transformers, secondary side: • According to the effective load of all connected devices • Line G (system potential) must always be fused • Where required, additional line G0 (system neutral)
Fuse of AC 230 V mains voltage	Transformers, primary side, as per the applicable installation regulations of the respective country

4.2 Device-specific regulations

▲ Device safety

Safety for the devices is ensured by (among other aspects):

- Supply of AC 24 V extra-low voltage as per SELV or PELV
- Double insulation between AC 230 V mains voltage and SELV/PELV circuits

▲ Auxiliary switches A, B

Apply **only mains voltage** or **only safety extra-low voltage** to the switching outputs of auxiliary switches A and B. Mixed operation is not permissible. Operation using various phases is not permissible.

▲ Feedback potentiometer for position indication

Include the potentiometer's electric data to indicate the damper position via external switching.

Electrical parallel connection of actuators

Up to 10 actuators of the same device type can be electrical parallel wired. Cable length and cable cross section have to be respected.

See chapter 6 "wiring notes" for more information.

Caution, maintenance

Do not open the actuator.

The device is maintenance-free. Only the manufacturer may conduct any repair work.

4.3 Notes on EMC optimization

Running cables in a duct

Make sure to separate high-interference cables from equipment susceptible to interference.

Cable types

- Cables emitting interference: Motor cables, particularly motors used with variable speed drives, energy cables
- Cables susceptible to interference: Control cables, extra-low voltage cables, interface cables, LAN cables, digital and analog signal cables

Cable segregation

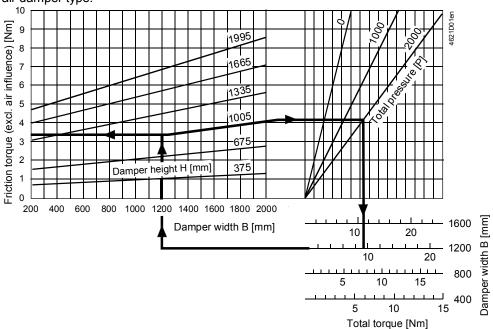
- You can run both cable types in the same cable ducting, but in different compartments
- If ducting with three closed sides and a partition is not available, separate the interference-emitting cables from other cables by a minimum of 150 mm or route in separate ducting
- Cross high-interference cables with equipment susceptible to interference only at right angles
- When, as an exception, signal and interference-emitting supply cables are run in parallel, the risk of interference is very high. In this case, limit the cable length of the positioning signal line DC 0...10 V for modulating actuators

Unshielded cables

We recommend using unshielded cables for non-networked types. When selecting unshielded cables, follow the manufacturer's installation recommendations. In general, unshielded twisted-pair cables have sufficient EMC characteristics for building services (incl. data applications) as well as the advantage that no provision is required for coupling to the surrounding earth.

4.4 Determining the actuator

Required actuator torque


Selection of the actuator depends on several torque factors. After obtaining the damper torque rating [Nm/m²] from the manufacturer and determining the damper area, calculate the total torque required to move the damper as follows:

Total torque [Nm] = torque rating [Nm/m²] × damper area [m²].

Instead of the torque rating, the total torque can also be determined from the manufacturer's sizing diagrams.

The following diagram (example EMCO) allows for determining the total torque for this air damper type.

Sizing chart

Example

Damper for blinds:

Width = 1200 mm Height = 1005 mm Total pressure = 2000 Pa

The total torque of about 10 Nm results from the chart.

Determining the actuator type

Determine your type of actuator from the table below:

If total torque[Nm] SF ¹	then use type
≤ 15 Nm	GEB1 (15 Nm) ²
≤ 25 Nm	GBB1 (25 Nm) ³
≤ 30 Nm	2 x GEB1 (2 x 15 Nm) ⁴
≤ 35 Nm	GIB1 (35 Nm) ⁵
≤ 70 Nm	2 x GIB1 (2 x 35 Nm) ⁶

Notes

When calculating the number of actuators, remember to include non-definable variables such as slight misalignment, damper age, etc., as a safety factor. We recommend a total safety factor of 0.8.

Apply the same factor when calculating the actuator torque by the torque rating.

If the required actuator torque is greater than 10 Nm, you can use the following:

¹ Safety Factor SF:

² One actuator of type series GEB...1 or

³ One actuator of type series GBB...1 or

⁴ Two actuators (tandem-mounted "Powerpack") of type series GEB13..1, GEB33..1, or

⁵.One actuator of type series GIB...1.

If the actuator torque is greater than 35 Nm, two actuators of type series GIB...1 can mechanically be connected and mounted on the damper shaft. (See data sheets N4621, N4626, N4656 and N4698).

5 Mounting notes

the damper shafts.

Mounting instructions All information and steps to properly prepare and mount the actuator are available in the Mounting Instructions 4 319 2883 0 (M4634), and 74 319 0394 0 (M4628) delivered with the actuator. Mounting position Choose the actuator's mounting position so that you can easily access the cables, the setting elements on the front of the actuator, as well as the terminal strip and the post headers. Refer to section 11.11 and 11.12 "Dimensions". Device protection IP54 (note mounting instructions) Mounting bracket The mounting bracket (see dimensions) is required for mounting on the damper shaft. The insertion depth for the bolt into the housing must be sufficient and guaranteed. Factory setting The actuator comes with a factory setting of +5° which ensures a tight close-off for the air dampers. Manual adjustment The actuator can be manually adjusted by pushing the gear train disengagement button. If necessary, you can limit the rotary angle at increments of 2° for the entire span by Mechanical limitation of rotary angle positioning the adjustment lever with shaft fastening screw in the respective position. Refer to chapter 8 "Technical data" for information on minimum length and diameter of Damper shafts

Use of rotary/linear sets

Mount the mounting sets for converting a rotary movement to linear movement (section 2.2 "Type summary") as per the separate Mounting Instructions.

6 Wiring notes

Introduction

Prior to wiring, study all information in the following sections:

- "Safety notes" in section 4.1
- "Device-specific regulations" in section 4.2
- "Notes on EMC optimization" in section 4.3
- "Diagrams" in chapter 0, and the
- HVAC plant diagram.

6.1 Permissible line lengths and cross-sectional aera

The line lengths and cross-sectional areas depend on the actuators power consumption and the permissible voltage drop of the connection lines to the actuator. Determine the necessary line length from the following diagram and the formulas.

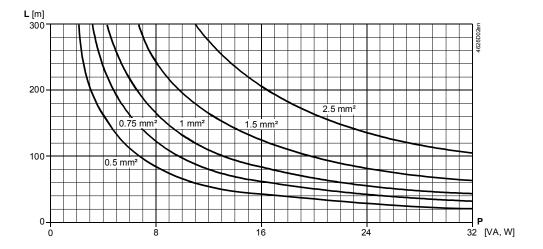
To determine the line length and cross section, adhere to the permissible operating voltage tolerance at the actuator (see chapter 8 "Technical data") in addition to the permissible voltage drop between the signal and supply lines (see table below).

The line sizing between the controller and the actuators depends on the actuator type used and is determined on the following basis.

Туре	Operating voltage	Line	Max. permissible voltage drop
GDB/GLB131	AC 24 V	G, Y1, Y2	4 % each (tot. 8 %) of AC 24 V
GDB161/GLB161	AC 24 V	G0, G G0, Y, U	4 % each (tot. 8 %) of AC 24 V 1 % of DC 10 V
GDB/GLB111	AC 24 V	G0, G	4 % each (tot. 8 %) of AC 24 V
GDB/GLB321	AC 230 V	L, N	2 % each (tot. 4 %) of AC 230 V

Note

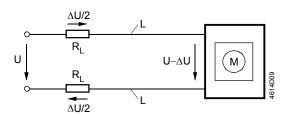
Permissible voltage drop


Notes on the G0 line GDB16..1../ GLB16..1..

Consider the following criteria:

- For modulating control:
 - The permissible positioning signal error caused by a voltage drop in the line current on the G0 line must not exceed 1 %
- The G0 line's voltage drop caused by surges in the DC circuit in the actuator may not exceed 2 Vpp
- In the case of improper sizing of the G0 line, actuator load changes may cause natural oscillation due to a change in the DC voltage drop
- The supply voltage loss at AC 24 V may not exceed 8 % (4 % over G0 line)
- DC voltage drop across the G0 line is caused as follows:
 - Asymmetrically in the internal actuator supply (ca. DC 8 mA)
 - Positioning signal current DC 0.1 mA (from Y = DC 10...10 V)
 - Positioning signal current DC 1 mA (from U = DC 0...10 V)
- It can be ignored for the following aspects

Line length/consumption AC 24 V


The chart applies to AC 24 V and shows the permissible line length ${\bf L}$ as a function of consumption ${\bf P}$ and as a parameter of the line cross sections.

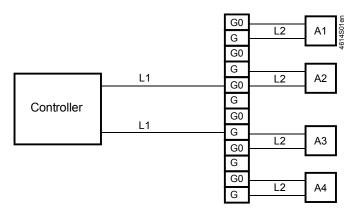
Notes on chart

- The values in [VA, W] on the P-axis are allocated to the permissible voltage drops $(\Delta U/2U = 4 \%)$ on line L as per the above table and to the diagram
- P is the primary power consumption for all actuators connected in parallel

Basic diagram: Voltage drop on the supply lines

Formula for line length

The maximum line length can be calculated using the following formula:


Operating voltage	Perm. voltage drop / line	Formula for line length
10011	4 % of AC 24 V	$L = \frac{1313 \cdot A}{P} [m]$
AC 24 V	1 % of DC 10 V	$L = \frac{5.47 \cdot A}{I(DC)} [m]$
AC 230 V	2 % of AC 230 V	$L = 46 \bullet \frac{1313 \bullet A}{P} [m]$

- A Line cross section in [mm²]
- L Permissible line length in [m]
- P Power consumption in [VA] or [W];
 - the value is printed on the actuator's type plate
- I(DC) DC current portion in line G0 in [A]

Line length for actuators connected in parallel

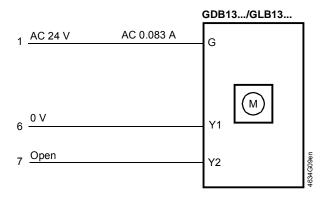
The following sections show how to determine the permissible line length and cross sections for the various actuators based on examples.

The examples for actuators connected in parallel apply to the following arrangement:

Assumption

The line resistances of L2 are equal and can be ignored for L1. Separately calculate the permissible line lengths L2 for other connections (ring, star-like).

6.2 Actuator wiring (three-position)


Actuators with threeposition control GDB/GLB13..1.. With three-position actuators, only the situation as presented under AC 24 V is important. Sizing takes place via lines 1 (G), 6 (Y1), and 7 (Y2).

The table shows the power consumption of an actuator as well as the permissible voltage drop.

Power consumption and perm. voltage drop with one actuator

Operating voltage/pos. signal		Perm. voltage drop for line 1 (G), 6 (Y1), 7 (Y2)
AC 24 V	2 VA	∆U/U = max. 8 % (4 % each per line)

Diagram: Conduction currents at AC 24 V The diagram shows the currents in the connecting lines for one actuator.

Example:

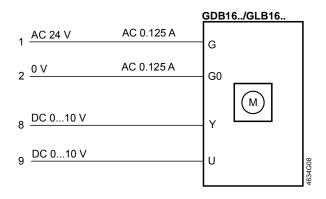
Parallel connection of two actuators

Determining the line lengths for two actuators GDB/GLB13..1 and AC 24 V supply. Only the currents in line 1 (G) and 6 (Y1) or 7 (Y2) determine the line sizing. Max. permissible voltage drop = **4** % **per line** (total 8 %).

- Consumption = 2 x 2 VA = 4 VA.
- Line current = 2 x 0.083 A = 0.167 A.

Max. permissible single line length: 275 m at 0.75 mm² cross-sectional area section.

6.3 Actuator wiring (modulating)


Modulating actuators GDB16..1../GLB16..1..

Power consumption and perm. voltage drop with one actuator

With AC supply, the G0 line has an AC 0.23 A supply current and a DC 0.1 mA positioning signal current (from Y = DC 0...10 V). The AC voltage drop on the G0 line does not impact the positioning signal Y.

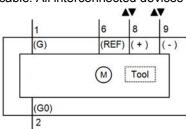
Operating voltage	Power consumption	Perm. voltage drop for line 1 (G)2 (G0)
AC 24 V	3 VA	4 % of AC 24 V

The diagram shows the currents in the connecting lines for **one actuator**.

Example:

Diagram:

Currents


Parallel connection of four actuators

Determining the line lengths for four actuators GDB16..1 / GLB16..1 and AC 24 V supply. Only the AC currents in line 1 (G) and 2 (G0) determine the line sizing. Max. permissible voltage drop = 4 % per line.

- Consumption = 4 x 3 VA = 12 VA
- Line current = 4 x 0.125 A = 0.5 A
- Permissible single line length for G, G0:
- 165 m at 1.5 mm² line cross section, or
- 275 m at 2.5 mm² line cross section

6.4 Actuator wiring (Modbus RTU)

The damper actuators are supplied with a prewired connecting and communication cable. All interconnected devices must be connected to the same G0.

Strand code	Strand color	Terminal code	Meaning
1	red (RD)	G	System voltage
			AC 24 V
2	black (BK)	G0	System neutral
			AC 24 V
6	violet (VT)	REF	Reference
8	grey (GY)	+	Bus (Modbus RTU)
9	pink (PK)	-	Bus (Modbus RTU)

Note

The operating voltage at terminals G and G0 must comply with the requirements under SELV or PELV.

Safety transformers with twofold insulation as per EN 61558 required; they must be designed to be on 100 % of the time.

7 Commissioning notes

References

All information necessary for commissioning is contained in the following:

- This document ("Technical basics" Z4634en)
- Mounting Instructions 74 319 2883 0 (M4634)
- HVAC plant diagram

7.1 General checks

Environmental conditions

Check to ensure that all permissible values as contained in chapter 8 "Technical data" are observed.

Mechanical check

- Check for proper mounting and to ensure that all mechanical settings correspond
 to the plant-specific requirements. Additionally, ensure that the dampers are shut
 tight when in the closed fully position
- Fasten the actuator securely to avoid side load
- Rotary movement check: Manually change the damper setting by pressing the gear train disengagement button and turn the adapter (only if not voltage is applied)

Electrical check

- Check to ensure that the cables are connected in accordance with the plant wiring diagram
- The operating voltage AC 24 V (SELV/PELV) or AC 230 V must be within the tolerance values

7.2 Electrical functional check

Rotary movement: Three-position control GDB13..1 / GLB13..1, GDB33..1 / GLB33..1 Check the actuator operating states as follows (see also section 9.3 " Connection diagrams (three-position control))

Wire connections		Betery direction	
AC 24 V	AC 230 V	Rotary direction	
1 – 6	4 – 6	Clockwise	
1 – 7	4 – 7	Counter-clockwise	
1 – 6 / 1 – 7 open	4-6/4-7 open	Actuator stays in position reached	

Rotary movement: Modulating control GDB16..1../GLB16..1..

Check the actuator operating states as follows (see also section 9.4 "Connection diagrams (modulating)"):

- When applying input signal Y = DC 10 V, the actuator turns (clockwise or counterclockwise as per the DIL switch setting)
- After interrupting the AC 24 V operating voltage, the actuator stops
- After interrupting positioning signal Y, but while operating voltage is still supplied, the actuator returns to the zero position

Characteristic function for the positioning signal

GDB163.1 / GLB163.1, GDB164.1 / GLB164.1 Note

Factory setting: The potentiometers for setting the offset Uo and span ΔU are set to the following values: Uo = 0 V, Δ U = 10 V.

Specify the values set for Uo and ΔU in the plant papers.

Position indicator

Check of output voltage U:

U = DC 0...10 V for rotary angle 90°

Feedback potentiometer

Measures resistance changes while the actuator turns from 0 to 90°.

Auxiliary switches A and B

- Switchover of the auxiliary switch contacts "A" and "B" as soon as the actuator reaches the respective switching positions
- Set the setting shafts with a screwdriver to the desired value (see section 3.2, "Rotary range and mechanical limitation".)

The angle values are valid only for the zero position of the actuator (clockwise direction).

Factory setting

Important

The auxiliary switches have the following factory settings:

- Switch A: Switchover point at 5° Switch B: Switchover point at 85°
- **DIL** switches for GDB16..1../GLB16..1.. DIL switch 1: Self-adaption

The following functions can be set and thus require checking.

Self-adaption can either be ON or OFF. See "Functions" for a functional description

Factory setting: Self-adaption OFF (0)

DIL switch 2: Direction of rotation

The rotational movement direction must match the desired damper movement direction (clockwise or counter-clockwise)

Factory setting: Clockwise direction ()

DIL switch 3: Output voltage characteristics for position indication

The operating action of output voltage U of the electrical position indication can be selected independent of the rotational movement direction. The following variants are possible:

Rot. movement direction 090°	DIL switch position	Output voltage U
C	non-inverted	DC 010 V
C	inverted	DC 100 V
G	non-inverted	DC 010 V
G	inverted	DC 100 V

Factory setting

Characteristic non-inverted (∠)

$$Y_S = 0...100 \% (0^{\circ}...90^{\circ})$$

U = DC 0...10 V

Control signal operating function, factory setting

The potentiometers which are used to set the offset and span have the following factory setting: offset Uo = 0 V; span ΔU = 10 V

The desired value can be adjusted using a flat blade screwdriver in accordance with the information supplied in "Technical design".

7.3 Modbus

7.3.1 HMI – Human-machine interface

Push button operation

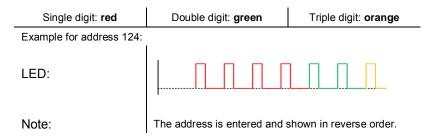
Activity	Push button operation	Confirmation
Display current address (in reverse order)	Press button < 1s	Current address is displayed
Enter Modbus address	Press button > 1s	See description next
with push-button	and < 5s	page
Enter push-button addressing mode (for use with Climatix TM controllers)	Press button > 1s and < 5s	LED shines orange (release button when red LED gets dark). Timeout after 1 min.
Reset to factory settings	Press button > 10s	Orange LED flashes

LED colors and patterns

Color	Pattern	Description
Green	steady	Start-up
	1s on / 5s off	Fault free operation ("life pulse")
	flashing	Bus traffic
Orange / green	1s orange / 1s green	Device is in override control
Orange	1s on / 5s off	Backup mode entered
Red	Steady	Mechanical fault / device jammed
	1s on / 5s off	Internal error
	0.1s on / 1s off	Bus-parameters not configured

Reset by push button

The damper actuators can be reset by push-button:


- 1. Press button for >10s → LED starts flashing orange
- 2. Release button while LED still flashes → LED keeps flashing for 3s
- 3. If the button is pressed within these 3s, the reset is cancelled.
- 4. After those $3s \rightarrow LED$ shines red (reset), then green (start-up).

7.3.2 Push button addressing

Display current address (in reverse order)

The Modbus address can be set without a separate tool by using push-button and LED.

To display the current address, press button <1s.

Set new address (in reverse order)

To set a new address:

- Enter addressing mode: press button > 1s until LED shines red, then release button (before LED gets dark).
- Enter digits: press button n-times → LED flashes per button press (feedback).
- Store digits: press button until LED shines in color of next digits → release button,
- Save address: press button until LED shines **red** (confirmation) → release button.
- An address can be stored at any time, i.e. after setting the single digit, or after setting the single and the double digits.
- Entered address is repeated one times for confirmation.
- Note: If button is released before LED shines red, the address is discarded.

Setting examples

Set address "124":

- 1. Enter addressing mode
- 2. Set single digit: Press button 4-times → LED flashes **red** per button press
- 3. Store single digit: press button until LED shines **green** release button
- 4. Set double digit: Press button 2-times \rightarrow LED flashes **green** per button press
- 5. Store double digit: press button until LED shines **orange** release button
- 6. Set triple digit: Press button 1-times → LED flashes **orange** per button press
- 7. Store address: press button until LED shines **red** release button → address is stored and displayed 1x for confirmation

Set address "50":

- 1. Enter addressing mode
- 2. Skip single digit: Hold button pressed until LED shines green release button
- 3. Set double digit: Press button 5-times → LED flashes green per button press
- 4. Store address (skip triple digit): hold button pressed until LED shines red
 - release button
 - → address is stored and displayed 1x for confirmation

Set address "5":

- 5. Enter addressing mode
- 6. Set single digit: Press button 5-times → LED flashes **green** per button press
- 7. Store address: press button until LED shines red
 - → address is stored and displayed 1x for confirmation

7.3.3 Commissioning

The following parameters must be checked or set prior to commissioning:

Parameter	Range	Description
Opening direction	CW (R) / CCW (L)	Opening direction of air damper
	Factory setting: CW (R)	
Adaptive positioning	Off / On	Adaption of actual opening range
	Factory setting: Off	to position feedback
		Off = No adaption / mapping
		0°90° → 0100 %
		On = Pos. adaption / mapping e.g. $0^{\circ}60^{\circ} \rightarrow 0100 \%$

Commissioning workflow 1: Full or partial configuration by tool

When using the AST20 handheld tool, all bus and actuator parameters can be set.

- Connect the AST20 to the damper actuator and navigate to the bus configuration menu
- Set bus parameters as desired
- Optionally make changes on actuator parameters.

With AST20, all parameters can be set using the mass configuration function. The bus parameters are included in the mass configuration function. It can be selected that the address is automatically incremented with each programmed damper actuator.

Commissioning workflow 2: Configuration over bus (fully or partially)

The devices can be configured over bus if the pre-commissioning settings allow for a connection between the Modbus master / programming tool and peripheral devices (i.e. non-conflicting addresses and matching baudrate / transmission format).

- Full configuration over bus: If the address is unique per segment when powered up, the device can be accessed by the Modbus master (or programming tool) and the address and other parameters can then be set to the definitive values.
- Partial configuration over bus: If the address is not unique per segment when
 powered up, each device must get a non-conflicting address before connecting it to
 the bus (e.g. using the push-button addressing method). After addressing all
 devices, the remaining configuration can be done over the bus using the default
 settings for baudrate (auto-baud) and transmission mode for the Modbus master.

Overwriting the bus configuration over bus uses a timeout. If "1 = Load" is not written into Reg 768 within 30 seconds, all values are discarded.

 Example: Table shows bus configuration registers before and after changing them over bus.

Register	Name	Pre-commissioning	New value (ex.)
764	Address	46	12
765	Baudrate	0 = auto	1 = 9600
766	Transmission Mode	0 = 1-8-E-1	3 = 1-8-N-2
767	Termination	0 = Off	0 = Off
768	BusConfigCmd	0 = Ready	1 = Load

Note

7.3.4 Modbus registers

Supported function codes

03 (0x03)	Read Holding Registers
04 (0x04)	Read Input Registers
06 (0x06)	Write Single Register
16 (0x10)	Write Multiple registers (Limitation: Max. 120 registers within one message)

Process values

Reg.	Name	R/W	Unit	Scaling	Range / enumeration
1	Setpoint	RW	%	0.01	0100
2	Override control	RW			0 = Off / 1 = Open / 2 = Close 3 = Stop / 4 = Min / 5 = Max
3	Actual position	R	%	0.01	0100
256	Command	RW			0 = Ready / 1 = Adaption 2 = Self test / 3 = ReInitDevice 4 = RemoteFactoryReset

Parameters

Reg.	Name	R/W	Unit	Scaling	Range / enumeration
257	Opening direction	RW			0 = CW / 1 = CCW
258	Adaptive Mode	RW			0 = Off / 1 = On
259	Operating Mode	RW			1 = POS
260	MinPosition	RW	%	0.01	0100
261	MaxPosition	RW	%	0.01	0100
262	Actuator Running Time	R	s	1	150
513	Backup Mode	RW			0 = Go to BackupPosition 1 = Keep last position 2 = Keep last setpoint
514	Backup Position	RW	%	0.01	0100
515	Backup Timeout	RW	s	1	065535
516	Startup Setpoint	RW	%	0.01	0100
764	Modbus Address	RW			1247 / 255 = "unassigned"
765	Baudrate	RW			0 = auto / 1 = 9.6 / 2 = 19.2 / 3 = 38.4 / 4 = 57.6 / 5 = 76.8 / 6 = 115.2
766	Transmission Format	RW			0 = 1-8-E-1 / 1 = 1-8-O-1 2 = 1-8-N-1 / 3 = 1-8-N-2
767	Bus Termination	RW			0 = Off / 1 = On
768	Bus Conf. Command	RW			0 = Ready / 1 = Load / 2 = Discard
769	Status	R			See below

Device information

Reg.	Name	R/W	Value	Example	Э			
1281	Factory Index	R	Two bytes, each coding an ASCII char.	00 5A → 00 "Z" Char. Device is of Series "Z"				
1282	Factory Date HWord	R Two bytes, the lower R		Reg. 128	32 = 0	00F/R	eg. 128	33 = 0418
			coding the Year (hex)		HWo	rd	LWo	rd
1283	Factory Date LWord	R	High byte: month			YY	MM	DD
			(hex) Low byte: day (hex)	Hex	00	0F	04	18
				Dec	00	15	04	24
				→ Mfg. date = 24 April, 2015				
1284	Factory SeqNo HWord	R	Hword + LWord =	Read 1284 → 000A Read 1285 → A206 → AA206(hex) = 696838 (dec)				
1285	Factory SeqNo HWord	R	Sequence number (hex)					
1409	TypeASN [Char_161]	R	Each register: Two	Example:				
1410	TypeASN	R	bytes, each coding an ASCII char.	0x47 44 = GD 0x42 31 = B1				
1411	TypeASN	R	ASN is coded	0x38 31				
1412	TypeASN	R	beginning with reg.	0x2E 31 = .1 0x45 2F = E/ 0x4D 4F= MO				
1413	TypeASN	R	1409					
1414	TypeASN	R		→ ASN is GDB181.1E/MO				

Register 769 "Status

Reg.	Name	R/W	Value
Bit 00	1 = Local override	Bit 06	1 = Adaption done
Bit 01	1 = Backup mode active	Bit 07	1 = Adaption in progress
Bit 02	1 = Reserved	Bit 08	1 = Adaption error
Bit 03	1 = Reserved	Bit 09	1 = Self test failed
Bit 04	1 = Device jammed	Bit 10	1 = Self test passed
Bit 05	1 = Nom. lifetime exceeded	Bit 11	1 = Reserved

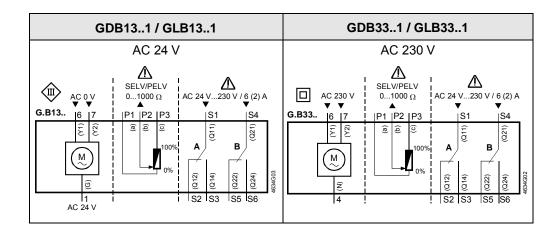
7.3.5 Parameter and function description

Function	Reg.	Description
Override control	2	The actuator can be operated in override control for commissioning / maintenance purposes or system-wide functions (e.g. night-cooling). • Local override: The actuator enters this state when a service tool is connected at the service interface. If the actuator is in backup mode, it will be controllable in local override but resume backup mode when the service tool is disconnected (or when the local override timeout is exceeded: 10s after the last read or write access). • Remote override: The actuator enters this state when an override command is sent over the bus. • Available commands: • Open / Close (depends on opening direction) • Min / Max (depends on Min/Max settings) • Stop
Adaptive positioning	258	 For air dampers where the opening range is smaller than the nominal opening range 090°, the feedback signal can be adapted to have the actual opening range represented as 0100%. Using adaptive positioning makes the actuator driving to its end positions at the first startup after activating the adaptive positioning. To trigger the adaptation again after the first startup, either the command "CalibrateAdaption" (Write "1" into register no. 256), or the adaptive positioning can be turned off and on again.
Backup mode	513, 514, 515	 In case the communication to the controller is lost, the device can be configured to go into a defined state. Default setting mode is "keep last setpoint", i.e. in case of communication loss, the device controls to the last received setpoint. If the backup mode is enabled, it can be configured as follows: go to a predefined backup position keep current position
Restarting the device	256	Restarting is possible by: • Power-reset (turning operating voltage off and on) or • by "RelnitDevice" command. → Device re-initializes and sets all process values to defaults.
Reset		The actuator supports the following re-initialization / reset behaviour: Local reset by push-button Tool-reset Remote reset: Using "RemoteFactoryReset" command. Effect of reset: Process values: set to ex-works default values. Parameters: Application and actuator parameters are set to factory defaults, Network parameters are reset only in case of local reset, not by remote reset (otherwise loss of communication). Not reset are: Counters, status flags, device info, and factory data.
Self test	256	When triggered, the self test drives the actuator to the detected limits and sets the flags in register 769 according to the result (bit 09 = 1 → "failed" or bit 10 = 1 → "passed"). The self test is not passed when the limits were not reached from the lower end (results in jam). If the Min/Max limits can be exceeded, the self test is not evaluated as failed.

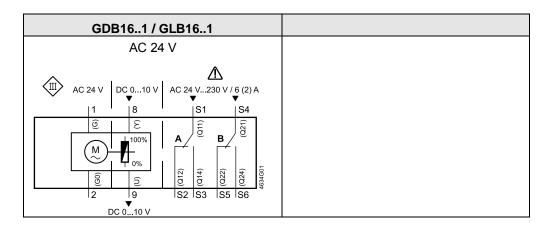
8 Technical data

AC 24 V supply	Operating voltage	AC 24 V \pm 20 %
(SELV/PELV) for	Frequency	50/60 Hz
GDB131/GLB131	Safety extra-low-voltage (SELV) or	
GDB161/GLB161	Protective extra-low-voltage (PELV) as per	HD 384
GDB111/GLB111	Requirements for external safety isolating transformer (100 % duty)	as per EN 61558
	Supply line fuse	max. 10 A
	Power consumption GDB/GLB131: Running	2 VA / 1 W
	GDB/GLB161: Running	3 VA / 2 W
	GDB/GLB111: Running	3 VA / 2.5 W
A	Holding	1 W
AC 230 V power supply	Operating voltage	AC 230 V ± 10 %
for GDB/GLB331	Frequency	50/60 Hz
	Supply line fuse	max. 10 A
Expedience I dete	Power consumption Running	2 VA / 1W
Functional data	Nominal torque	5 Nm (GDB / 10 Nm (GLB)
	Maximum torque (when locked)	7 Nm (GDB / 14 Nm (GLB)
	Minimum holding torque	5 Nm (GDB / 10 Nm (GLB) 90 °
	Nominal rotary angle (with position indication)	90 95° ± 2°
	Maximum rotary angle (mechanic limitation) Runtime for 90° rotary angle	150 s (GDB / GLB)
	Mechanical life	10 ⁵ cycles
٨	Mechanical me	10 cycles
Inputs		
Positioning signal for	Operating voltage AC 24 V (wires 1-6/G-Y1)	clockwise
GDB131/GLB131	(wires 1-7/G-Y2)	counterclockwise
	0 (
Positioning signal for	Operating voltage AC 230 V (wires 4-6/N-Y1)	clockwise
GDB331/GLB331	(wires 4-7/N-Y1-Y2)	counterclockwise
	Input voltage (wires 8-2/Y-G0)	DC 010 V
Positioning signal for	Current consumption	0.1 mA
GDB161/GLB161	Input resistance	> 100 kΩ
	Max. permissible input voltage	DC 35 V limited to 10 V
	Protected against faulty wiring	max. AC 24 V
	Neutral zone for non-adjustable characteristic function	200 mV
	for adjustable characteristic function	2 % of ΔU
	Hysteresis for non-adjustable characteristic function	70 mV
	for adjustable characteristic function	0.7 % of ∆U
Positioning signal for	Modbus RTU	RS-485, galv. separated
GDB111/GLB111	Number of nodes	Max. 32
	Address range	1255
	ŭ	(default: 255)
	Transmission formats	1-8-E-1 / 1-8-O-1 / 1-8-N-1 / 1-8-N-2
		(default: 1-8-E-1)
	Baudrates (kBaud)	Auto / 9.6 / 19.2 / 38.4 / 57.6 / 76.8 /
	Daddiates (NDadd)	115.2
		(default: Auto)
	Termination	120 Ω el. switchable
	Termination	(default: off)
		•
Adjustable characteristic	Adjustable with 2 potentiometers:	
function for GDB163.1/	Offset Uo	DC 05 V
GLB163.1, GDB164.1/	Span ∆U	DC 230 V
GLB164.1	Max. input voltage	DC 35 V
	Protected against faulty wiring	max. AC 24 V
A Outputs		
Position indicator for	Output signal (wires 9-2/U-G0)	
GDB161/GLB161	Output voltage U	DC 010 V
	Max. output current	DC \pm 1 mA
	Protected against faulty wiring	max. AC 24 V

Feedback potentiometer	Change of resistance (wires P1-P2)	01000 Ω		
for GDB132.1/GLB132.1,	Load	< 1 W		
GDB332.1/GLB332.1	Max. sliding contact current	< 10 mA		
	Permissible voltage at potentiometer (SELV/PELV)	AC 24 V		
	Insulation resistance between potentiometer and housing	AC 500 V		
Auxiliary switches	Contact rating	6 A resistive, 2 A inductive		
for GDB136.1/GLB136.1	Life: 6 A resistive, 2 A inductive	10 ⁴ switchings		
GDB336.1/GLB336.1	5 A resistive, 1 A inductive	5 x 10 ⁴ switchings		
GDB164.1/GLB164.1	without load	10 ⁶ switchings		
GDB166.1/GLB166.1	Switching voltage	AC 24230 V		
OBB100.1/GEB100.1	Nominal current resistive/inductive	6 A / 2 A		
	Electric strength auxiliary switch against housing	AC 4 kV		
	Switching range for auxiliary switches	5°90°		
	Setting increments	5°		
	Switching hysteresis	2°		
	Factory switch setting			
	Switch A	5°		
	Switch B	85°		
Connection cables	Cross section of prewired connection cables	0.75 mm ²		
	Standard cable length	0.9 m		
	Permissible length for signal lines (non-communicative types)	300 m (see chapter 6)		
Degree of protection of housing	Degree of protection as per EN 60 529 and M4634	IP54		
Protection class	Insulation class	as per EN 60730		
Trotocueri olace	AC 24 V, Feedback potentiometer	III		
	AC 230 V, Auxiliary switches	 II		
Environmental conditions	Operation	IEC 60721-3-3		
Environmental conditions	Climatic conditions	Class 3K5		
	Mounting location	interior, weather-protected		
	Temperature extended	-32+55 °C		
	Humidity (non-condensing)	-52+55 C < RH 95 %		
	Transport	< KH 95 % IEC 60721-3-2		
	Climatic conditions	Class 2K3		
		-32+70 °C		
	Temperature extended Humidity (non-condensing)	< 95 % R.H.		
	· · · · · · · · · · · · · · · · · · ·			
	Storage	IEC 60721-3-1		
	Climatic conditions	Class 1K3		
	Temperature extended	-32+50 °C		
	Humidity (non-condensing)	< 95 % R.H.		
Other decide and discretives	Mechanical conditions	Class 2M2		
Standards and directives	Product safety	EN 00700 0 44		
	Automatic electrical controls	EN 60730-2-14		
	for household and similar use	(type 1)		
	Electromagnetic compatibility	For residential, commercial and		
	(Application)	industrial environments		
		GDB1 GLB1		
	EU Conformity (CE)	A5W00003842 ¹⁾ A5W00000176 ¹⁾		
		GDB1 GLB1		
	RCM Conformity	A5W00003843 ¹⁾ A5W00000177 ¹⁾		
	Product environmental declaration 2)	CM2E4634E 1)		
Dimensions	Actuator W x H x D (see "Dimensions 11.1")	70.7 x 137.0 x 60.6 mm		
	Damper shaft			
	round	816 mm		
	round	810 mm with centering element		
	Square	612.8 mm		
	Min. length	30 mm		
	Max. shaft hardness	< 300 HV		
Weight	Standard type without packaging	0.48 kg		


¹⁾ The documents can be downloaded from http://siemens.com/bt/download

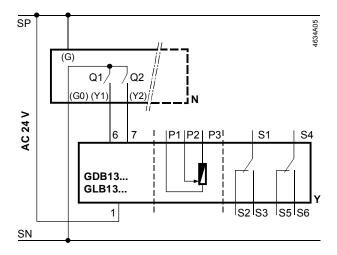
²⁾ The product environmental declaration contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).


9 Diagrams

9.1 Internal diagrams

Three-position control

Modulating control Y = DC 0...10 V, 0...35 V

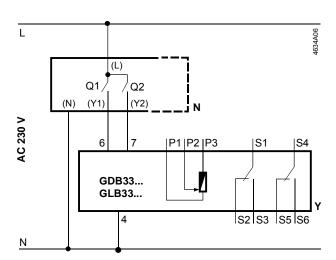

9.2 Cable labeling

All wires are color-coded and labeled.

	Cable					
Pin	Code	No.	Color Abbreviation		Meaning	
Actuators AC 24 V	G G0	1 2	red black	RD BK	System potential AC 24 V System neutral	
Three-position / modulating types	Y1 Y2 Y U	6 7 8 9	purple orange gray pink	VT OG GY PK	Positioning signal AC 0 V, "clockwise" Positioning signal AC 0 V, "counter-clockwise" Pos. signal DC 010 V, 035 V Position indication DC 010 V	
Modbus types	REF + -	6 8 9	purple gray pink	VT GY PK	Modbus RTU reference Modbus RTU + Modbus RTU -	
Actuators AC 230 V	N Y1 Y2	4 6 7	blue black white	BU BK WH	Neutral conductor Positioning signal AC 230 V, "clockwise" Pos. signal AC 230 V, "counter-clockwise"	
Auxiliary switches	Q11 Q12 Q14 Q21 Q22 Q24	S1 S2 S3 S4 S5 S6	gray/red gray/blue gray/pink black/red black/blue black/pink	GY RD GY BU GY PK BK RD BK BU BK PK	Switch A Input Switch A Normally Closed contact Switch A Normally Open contact Switch B Input Switch B Normally Closed contact Switch B Normally Open contact	
Feedback potentiometer	a b c	P1 P2 P3	white/red white/blue white/pink	WH RD WH BU WH PK	Potentiometer 0100 % (P1-P2) Potentiometer pick-off Potentiometer 1000 % (P3-P2)	

9.3 Connection diagrams (three-position control)

GDB13..1.. / GLB13..1.. AC 24 V



N Controller

Y Actuator GDB/GLB13..1.. SP System potential AC 24 V

SN System neutral Q1, Q2 Controller contacts

GDB33..1 / GLB33..1 AC 230 V

Controller

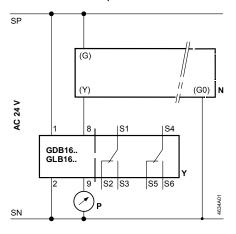
Υ

Actuator GDB/GLB33..1

L System potential AC 230 VN System neutral

N System neutral Q1, Q2 Controller contacts

Operating states for actuators GDB13..1../GLB13..1.., GDB33..1/GLB33..1 The table shows the actuator's operating state for rotary directions of rotation regardless of the position of the controller contacts Q1 and Q2.

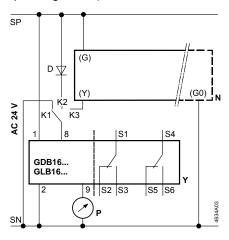

Controller contacts		Operating state
Q1	Q2	
		Remains in current position
4)	Ç
- /	Ą	(
4	Ą	Not permissible

9.4 Connection diagrams (modulating)

9.4.1 Typical application

The controller output is connected directly to the actuator input.

GDB16..1.. / GLB16..1..



- N Controller
- Y Actuator GDB16..1../GLB16..1..
- P Position indication
- SP System potential AC 24 V
- SN System neutral

9.4.2 Special diagram for modulating control

The following connection enable different operating states of the actuator depending on the position of the changeover switch featuring switch contacts K1, K2, K3 (see table of operating states).

Modulating control, fully open, fully closed with GDB16..1../GLB16..1..

N Controller

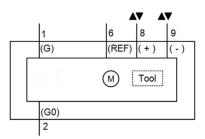
Υ

- Actuator GDB16..1../GLB16..1..
- P Position indication
- SP System potential AC 24 V
- SN System neutral D Diode (e.g. R4000)
- K1...K3 Switch contacts (10 V / 0.1 mA)

Operating states with GDB16..1../GLB16..1..

Switch contacts	Operating state	Rotary o	lirection
K3 III	Modulating control	\Diamond	\cap
K2	Fully open	Ų	Č
K1	Fully closed	Č	Ċ
DIL switc	h position	self adapt	self adapt

Note


*) Full opening for actuator types with adjustable characteristic function depends on the set voltage values (Uo, Δ U) and the supply voltage tolerance

9.5 Connection diagrams (networked)

9.5.1 Typical application

The application controller is connected to the actuator by the bus cable.

GDB11..1.. / GLB11..1..

10 Environmental compatibility and disposal

General notes

This actuator was developed and manufactured by using environmentally-compatible materials and by complying with environmental standards.

For disposal, please remember the following at the end of product life or on defects:

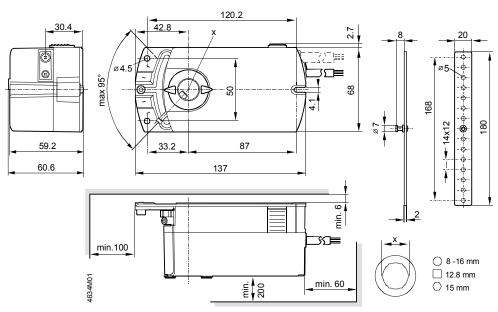
- · The device consists of
 - Materials such as steel, aluminum die-cast, and zinc die-cast.

Do not dispose as household garbage. This particularly applies to the circuit board. See also European Directive 2012/19/EU

- As a rule, dispose of all waste in an environmentally compatible manner and in accordance with environmental, recycling, and disposal techniques.
 Adhere to all local and applicable laws.
- The aim is to achieve maximum recyclability at the lowest possible pollution. To do this, note the various material and disposal notes printed on specific parts.

Environmental declaration

The environmental declarations for these actuators contain detailed information on the materials and volumes used. Request a declaration at your local Siemens sales office.


11 Appendix

Chapter contents

This chapter contains:

- · Actuator dimensions
- Referenced documents

11.1 Dimensions

Dimensions in mm

11.2 Referenced documents

Purpose of this listing

The previous chapters contain all information relevant to safety and project-specific requirements, mounting, wiring, and commissioning of actuators.

Documents and standards

The following list contains all documents referenced by this document on basics:

- Data Sheets (N....) with detailed specifications
- Technical basics (Z....) with basics on air damper actuators
- Mounting Instructions (M....), documents supplied with product

Note

The document and classification numbers listed in the table below match those of the Database STEP on the company-internal Intranet.

Standards

All standards and directives relevant to engineering are also listed.

Technical documentation

Type series GDB...1/GLB...1

Accessories for type series GDB..1../GLB..1..

Document number (classification no.)	Title/description	Contents
CM2N4634en (N4634)	Actuators for air dampers, rotary version (GDB1/GLB1: Three-pos. and modulating)	Type overview, function and selection criteria
A6V10881141	Damper Actuator Modbus RTU - GB111.1E/MO	Type overview, function and selection criteria
4 319 2883 0 (M4634)	Mounting instructions on GDB1 und GLB1	Instructions on mounting a rotary actuator without spring return
CM2N4698en (N4698)	Accessories and spare parts for actuators GDB1, GLB1	Overview, allocation to actuator type, and application
74 319 0000 0 (M4634.1)	Rotary/linear set with lever ASK71.5	
74 319 0026 0 (M4634.2)	Rotary/linear set with lever and angle bracket for duct and wall mounting ASK71.6	Mounting Instructions and
74 319 0236 0 (M4614.1)	Universal lever ASK71.9	application examples
7431906620 (M4634.3)	ASK75.5 Weather shield for rotary actuator ASK75.5 Weather shield for linear actuator	
	Shaft insert ASK78.3	
	Centering insert round ½" ASK78.5	
	Centering insert square profile 8 mm ASK78.6	
	Centering insert square profile 10 mm ASK78.7	
	Centering insert round 10 mm ASK78.9	
	Centering insert round 12 mm ASK78.10	
	Centering insert D-Profile FIX dia 12 x 9 mm ASK78.12	
	Centering insert, square profile 8 mm ASK78.14	

Standards

HD 384	Electrical installations in buildings
EN 61558	Safety of transformers, mains-powered units and similar equipment
EN 60730	Automatic electrical controls for household and similar use
IEC/EN 61000-6-3	Electromagnetic compatibility: Emissions
IEC/EN 61000-6-1	Electromagnetic competibility Immunity
IEC/EN 61000-6-2	Electromagnetic compatibility: Immunity
2004/108/EEC	Directive for electromagnetic compatibility
2006/95/EEC	Low-voltage directive

Issued by
Siemens Switzerland Ltd
Building Technologies Division
International Headquarters
Gubelstrasse 22
6301 Zug
Switzerland
Tel. +41 41-724 24 24
www.siemens.com/buildingtechnologies

© Siemens Switzerland Ltd, 2012 Technical specifications and availability subject to change without notice.

42/42